

SymbiFlow Architecture Definitions

Warning: This project is a work in progress and many items may be broken.

This project contains documentation of various FPGA architectures, it is currently concentrating on;

	Lattice iCE40

	Artix 7

The aim is to include useful documentation (both human and machine readable) on the primitives and routing infrastructure for these architectures. We hope this enables growth in the open source FPGA tools space.

The project includes;

	Black box part definitions

	Verilog simulations

	Verilog To Routing architecture definitions

	Documentation for humans

Contents

	Getting Started with SymbiFlow Toolchain development
	Clone repository

	Prepare environment

	Build example

	Load bitstream

	Project X-Ray
	Flow Diagram

	VPR routing graph

	Xilinx 7 Series SymbiFlow Partial Reconfiguration Flow

	Development Practices
	Structure

	Verilog To Routing Notes

Getting Started with SymbiFlow Toolchain development

Warning

This documentation explains the first steps in the development of the toolchain itself. If you are looking for the user documentation, please look at https://symbiflow-examples.readthedocs.io/en/latest/ instead.

This section provides an introduction on how to get started with the development of the SymbiFlow toolchain.
In order to generate a bitstream (or any intermediate file format), you can use one of the toolchain tests.
The following steps describe the whole process:

Clone repository

git clone https://github.com/SymbiFlow/symbiflow-arch-defs.git

Prepare environment

Download all the necessary packages, tools and databases into an isolated conda environment:

cd symbiflow-arch-defs
make env

This also checks out all the submodules and generates the build system (Make or Ninja) from the CMake configuration.
If you want to use the Ninja build tool add this line before calling make env:

export CMAKE_FLAGS="-GNinja"

Build example

While different architectures provide different build targets, there are some targets that should exist for all architectures.

Each architecture has its own toolchain backend that will be called during build.
(See Project X-Ray [https://prjxray.readthedocs.io/en/latest/]
and Project Trellis [https://prjtrellis.readthedocs.io/en/latest/] for more information)

For development purposes a set of test designs are included for each supported architecture. In order to perform a build
of a test design with the Make build system enter the appropriate test build directory specific to your target architecture
and invoke desired make target.
Assuming that you would like to generate the bitstream .bit file with the counter example for the Arty board, which uses Xilinx Artix-7 FPGA,
you will execute the following:

cd build/xc/xc7/tests/counter
make counter_arty_bit

If you use Ninja then the target is accessible from root build directory:

cd build
ninja counter_arty_bit

Note

Test design targets names are based on the following naming convention: <design>_<platform>_<target_step>, where <target_step> is the actual step to be done, e.g.: bit, place, route, prog.

Warning

Generating architecture files is expected to take a long time to build, even on fast machines.

Load bitstream

The last step is to load the bitstream to your platform.
The final output file can be found in the appropriate test directory, i.e:
build/xc/xc7/tests/counter/counter_arty/artix7-xc7a50t-arty-swbut-roi-virt-xc7a50t-arty-swbut-test/top.bit

For every board the loading process may be different and different tools will be required.
OpenOCD is the most widely used tool for loading bitstream in the Symbiflow Toolchain. It is provided as a conda
package during the environment setup and CMake keeps track of its executable. Other programming tools used in Symbiflow that are automatically downloaded and referenced by CMake are tinyfpgab and tinyprog.

For convenience the prog targets are provided for loading the bitstream, e.g.:

make counter_arty_prog

or for Ninja:

ninja counter_arty_prog

Note

Loading the bitstream into an FPGA can be done outside of the Symbiflow.
There are multiple tools for loading bitstreams into FPGA development boards.
Typically, each tool supports a specific target family or the lines
of products of a vendor. Some of the most known are listed in hdl/constraints/prog [https://github.com/hdl/constraints/tree/main/prog]

OpenFPGALoader

OpenFPGALoader is an universal utility for programming the FPGA devices that is
a great alternative to OpenOCD. It supports many different boards with FPGAs
based on the architectures including xc7, ECP5, iCE40 and many more. It can utilize
a variety of the programming adapters based on JTAG, DAP interface, ORBTrace,
DFU and FTDI chips.

Installing OpenFPGALoader

OpenFPGALoader is available in several packaging solutions. It can be installed
with distribution specific package managers on Arch Linux and Fedora.
There are also prebuilt packages available in conda [https://anaconda.org/litex-hub/openfpgaloader]
or packages in tool repository [https://github.com/trabucayre/openFPGALoader/releases].
OpenFPGALoader can also be built from sources. For installation guidelines
using both prebuilt packages and building from source please refer to instructions in readme [https://github.com/trabucayre/openFPGALoader/blob/master/INSTALL.md].

Usage

For programming the FPGA use one of these commands:

openFPGALoader -b <board> <bitstream> # (e.g. arty)
openFPGALoader -c <cable> <bitstream> # (e.g. digilent)
openFPGALoader -d <device> <bitstream> # (e.g. /dev/ttyUSB0)

You can also list the supported boards, cables and fpgas:

openFPGALoader --list-boards
openFPGALoader --list-cables
openFPGALoader --list-fpga

If you encounter any issues, please refer to the OpenFPGALoader README [https://github.com/trabucayre/openFPGALoader#readme]
as it provides more useful information on the usage of the tool.

Project X-Ray

This section contains the information about the methods and tools used for
managing Project-XRay data inside the Architecture Definitions Project.

	Flow Diagram

	VPR routing graph
	Database Contents

	VPR routing description

	Creating a 7-series routing graph for VPR

	Xilinx 7 Series SymbiFlow Partial Reconfiguration Flow
	Background

	Flow Overview

	Partition Region Example (switch_processing)

	Frequently Encountered Errors

Flow Diagram

This diagram depicts the most important files in the Architecture Definition
project related to Project X-Ray.

Rectangular boxes represent the files within the project, whereas rounded blocks
represent the program. Colores indicates either third-party project or projects
related to SymbiFlow Toolchain. A detailed description is presented on the figure.

[image:]

VPR routing graph

Database Contents

This section will describe the prjxray database contents with respect to
the routing graph.

Grid

Project X-Ray documents one or more parts. Within a part is a grid.
The grid is documented in tilegrid.json and can be accessed via the
prjxray API via the prjxray.db.Database.grid method.

Each location within the grid is a tile, which has a tile
type and grid coordinate. Each instance of a tile type has the
same sites, tile wires, and pips. A tile type may have zero
or more sites, zero or more tile wires and zero or more pips.
Pips are programmable interconnect points, and connect two tile
wires together in a programmatic fashion.

A tile may also have a bits definition if the output bitstream
configures this tile. A bits definition consists of a block
type, a base address, the number of frames in the base
address column, a word offset, and a number of words.

Routing fabric

Connection schemes

	From

	To

	Local Tile Wire

	PIP

	Local Tile Wire

	Site Pin

	Local Tile Wire

	Remote Tile Wire

	Remote Tile Wire

	Local Tile Wire

	Site Pin

	Local Tile Wire

	PIP

	Local Tile Wire

Tile wire

	Property

	Valid choices

	connections

	
	one or more PIPs, and

	one or more Remote Tile Wires, and

	only 1 site pin

PIP

	Property

	Valid choices

	src_wire

	Local Tile Wire

	dst_wire

	Local Tile Wire

	is_directional

	True or False

[image: ../_images/rrgraph-wire.svg]
A 7-Series part contains nodes, which consist of tile wires. Tile
wires are sourced either from a site pin or a pip or a tile
wire from another tile within the grid. Tile wires sink to either
a site pin or a pip or a tile wire in another tile within
the grid. Tile wires have not been observed to have a source and
sink that are both site pins.

Tile wires that source or sink within a tile are documented in the
tile type definition, which is found in the tile_type_<tile
type>.json files. The tile type definition has a list of the tile
wires within the tile, a list of pips and a list of sites. If
the tile wires source or sink within the tile, then the tile
wire will appear in either a pip or a site definition. Tile
type definitions can be retrieved via db.Database.get_tile_type method.

All pip definitions have a src_wire and dst_wire keys,
indicating what tile wire is connected to each end of the pip.

Note

A bidirectional pip will have the is_directional key set to “0”, but use
src_wire and dst_wire as if it was a unidirectional pip.

Each site definition will have a site_type and dictionary of
site_pins, along with site naming information. The site_pins
dictionary maps the site_pin of the site_type to the
tile_wires within the tile. The direction of site_pin can be
found in the site_type definition, site_type_<site type>.json
file. Site type definitions can be retrieved via
db.Database.get_site_type method.

The tile wires combined with the tile’s pip list and the
site_pins definition for each site completes the routing description
for the tile. However there needs to be a relationship between tile
wires from tiles to each other. This is defined in the
tileconn.json file, provides a list of which tile wires are
connected between tiles. The tileconn.json relates tile types via
their grid coordinates.

Example:

{
 "grid_deltas": [
 0,
 1
],
 "tile_types": [
 "CLBLL_L",
 "CLBLL_L"
],
 "wire_pairs": [
 [
 "CLBLL_LL_CIN",
 "CLBLL_LL_COUT_N"
],
 [
 "CLBLL_L_CIN",
 "CLBLL_L_COUT_N"
]
]
 },

This reads as “a CLBLL_L that is at (x+0, y+1) from another CLBLL_L,

	Connect CLBLL_L(x, y+1).CLBLL_LL_COUT_N to CLBLL_L(x, y).CLBLL_LL_CIN

	Connect CLBLL_L(x, y+1).CLBLL_L_COUT_N to CLBLL_L(x, y).CLBLL_L_CIN

The tile wire connections can be retrieved via
db.Database.get_connections.

The tile wire connections from tileconn.json, and the pips and
site pins from each tile_type_<tile type>.json provides a complete
routing graph description for a part between sites. Routing
within sites is done via pb_type architectural XML, and is not
documented as part of prjxray at this time.

VPR routing description

The previous section documented the contents of the prjxray database.
Prior to describing the process of converting that database into VPR, a
short discussion of the VPR routing data structures is required.

At the most basic level, VPR’s routing graph is made of nodes and
edges. Edges are either configurable or static connections
between nodes. Static connections are always present. Configurable
connections are selected during routing. All edges must have a
switch. A switch is used to describe timing information along
the edge, and it determines if the switch is configurable or not. The
two most common types of switches are SHORT (electrical short) and
MUX.

SHORT is used to join two nodes in the routing graph, both logically
and for timing purposes. SHORT’s are not configurable.

MUX is roughly equivalent to a pip. It is configurable and is used
by the router. For the purposes of timing, the timing on nodes on
each side of the pip are seperate. A PASS_GATE is a switch that does
not do this isolation.

The detiled description about switch types can be found in
VTR documentation [http://docs.verilogtorouting.org/en/latest/arch/reference/#arch-switches] .

[image: ../_images/vpr-rrgraph-types.svg]
So edges connect nodes together, but what are the nodes
themselves? Nodes are either a source/sink (e.g. a site pin) or
are routing fabric. VPR models each source or sink as 2 or more nodes.
The site pin is a SINK or SOURCE. To accommodate the idea that a
site pin might have multiple routing paths, the SINK or SOURCE then
is connected to a IPIN or OPIN respectively. Then IPIN’s/OPIN’s are
connected to other nodes. So by default, all IPIN’s connect to exactly
one SINK, and all SOURCE’s connect to exactly one OPIN.

There are two routing fabric node types, CHANX and CHANY. CHANX are
wires that traverse in the x-direction and CHANY are wires that traverse
in the y-direction. Channels lies between tiles (see this
image [http://docs.verilogtorouting.org/en/latest/_images/fpga_coordinate_system.png]
from the VPR routing graph description
documentation [http://docs.verilogtorouting.org/en/latest/vpr/file_formats/]).
Channels cannot extended to the first or last column in the grid.

IPIN’s and OPIN’s have a direction that they point in relative to the
tile they belong too. They can be on the north, east, west, south, or
some combination. For example, in the image above, a pin at (1, 2) on
the east side could connect to CHANY nodes at (1,2).

Creating a 7-series routing graph for VPR

In order to create a routing graph for VPR, several new things must be
defined:

	How to map the routing tile wires into VPR channels or other
constructs?

prjxray_form_channels.py [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc7/utils/prjxray_form_channels.py]

	Which side of the tile should site pins be assigned to connect to
other tiles (in the case of direct connections like carry chains)
and to VPR channels?

prjxray_assign_tile_pin_direction.py [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc7/utils/prjxray_assign_tile_pin_direction.py]

After the preparation work, output can be generated for VPR. 3 types of
output are generated:

	Tile pb_types XML’s that connect site pb_types site pins to
tile wires

prjxray_tile_import.py [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc7/utils/prjxray_tile_import.py]

	Architecture XML that is the grid and has direct inter-tile
connections

prjxray_arch_import.py [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc7/utils/prjxray_arch_import.py]

	Final routing graph XML

prjxray_routing_import.py [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc7/utils/prjxray_routing_import.py]

Click on the figure below to zoom-in:

[image:]

Tile wire classification

Before channels can be formed, tile wires need to be bucketed into
their purpose.

Step (1) - Group tile wires into “nodes”

The first step is to first re-form nodes that contain all the
directly connected tiles wires These nodes are not VPR
nodes, they are simply the collection of tile wires that are
already a net (electrically equivalent).

Step (2) - Classify “nodes”

Each node then needs to be classified. The simplest classification is
a channel wire, which means that pips route on and off of the
node. However there are other important classifications. For example,
the carry chain connection between two CLBLL_L tiles should be
modelled as a tile direct connection, rather than routing onto a
channel and back off. The is classified as a “edge with mux”.

The classification is broken down into the following categories:

	CHANNEL - Pips route on and off of this node.

	EDGE_WITH_MUX - Two tile wires connected by a pip.

	The first tile wire sources at a site pin, and the second
tile wire sinks at a site pin.

	This captures direct inter-tile connections like carry chain
wires, BRAM data cascade wires, etc.

	NULL - A node that has either no source or no sink. This wires
typically occur near the edge of the grid.

	EDGES_TO_CHANNEL - A node that sources and sinks from a site pin
and connects via a pip to a CHANNEL

[image: ../_images/import-wire-class.svg]
There is another classification EDGE_WITH_SHORT, which is a direct
connection between two site pins. This does not appear to occur in
7-series parts.

The reason this classification is important is that each node that is a
CHANNEL must be mapped into one or more CHANX or CHANY nodes.
EDGE_WITH_MUX nodes must be converted into root level architecture
direct connections, and will be edges between two site pin
nodes. EDGES_TO_CHANNEL will be become edges in the routing between
site pins nodes and CHANX/CHANY nodes.

Channel formation

All nodes that were classified as CHANNEL type need to assigned CHANX
and CHANY dimensions. This is done via
make_tracks [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/utils/lib/rr_graph/tracks.py].
make_tracks takes a point bag containing all of the source and sink grid
locations for a particular channel. It returns straight lines such that
all sources and sink grid locations can route on to or off of the
channel.

Point Bag to CHANX / CHANY decomposition

[image: ../_images/vtr-rrgraph.png]

Note

Currently this logic does not optimize for the lowest required
track count, instead aiming to be correct first.

Pin assignment

Because the pin directions are shared among tile types via the root
pb_type that matches the tile, pin directions must be assigned taking
into account the wire type attached to each site pin within the
tile. For example, EDGE_WITH_MUX pins must be facing each other.
EDGES_TO_CHANNEL pins must face a direction that contains their channel,
per the tracks defined during channel formation.

Once pins are assigned, during tile generation, the pin assignments are
used to ensure that pins can be connected into the routing graph as
expected.

Tile pb_type and root architecture XML

The tile type pb_type XML files are emitted using the information from
tile type, and the pin direction assignment.

The root architecture XML is emitted using the tile grid, the direct
inter-tile connections from node classification.

Routing import

Routing import starts with the virtual routing graph from the
architecture XML. This routing graph will have correct nodes for
IPIN, OPIN, SOURCE, and SINK types. However the CHANX and CHANY
nodes, and the edges to and from the CHANX and CHANY nodes
will be incorrect. So the first step is to copy the portions of the
virtual routing graph that are correct (block types, grid definition,
nodes and edges belong to IPIN, OPIN, SOURCE, SINK).

Then channels are emitted to accommodate the tracks made during channel
formation. Each track in channel formation is a new node of type
CHANX or CHANY. If a node is a CHANNEL with multiple tracks, then a
SHORT edge is emitted to connect the CHANX’s and CHANY’s together,
making VPR treat them as electrically common.

Each pip in the grid is then matched with src and sink
nodes, if possible. When pips are added to the routing graph,
they also have FASM metadata to enable the pip in the bitstream.

Note

As of 2020-03-26 - Not all pips will be emitted. The current
reasons are:

	Don’t currently support PIPs which connect the same src and
destinations with the same switch

To avoid requiring support for IOB and clock networks for initial
bringup activities, an ROI harness is used. The ROI harness brings some
input/output signals to specific tile wires within the routing
graph, including a clock source. During root architecture and routing
import, synthetic tiles are generated that present the ROI harness sink
or source, and have either an IPAD or OPAD. These tiles are purely
synthetic, and are only used to describe the source or sink location
within the routing graph to VPR of the ROI harness signals.

Several modifications to the standard flow are required to support the
ROI and synthetics. First, nodes that contain tile wires are
restricted to being either “input only” or “output only” depending on
whether the synthetic tile is a clock, in pad or out pad. On “input
only”, all pip that would sink to that node are skipped. On
“output only”, all pip that would source from that node are
skipped. Then a new synthetic edge is added connected a synthetic
IPAD or OPAD tile to the relevant node. VPR can then route to or
from this node just as if it was a actually IPAD or OPAD.

Xilinx 7 Series SymbiFlow Partial Reconfiguration Flow

Note: SymbiFlow currently does not support partial bitstream generation. This is a goal in the future, but at the moment partial FASM must be concatenated with an overlay to generate a full bitstream.

Background

Partition Regions

In this documentation the terms partition region and region of interest (ROI) are used interchangeably to refer to some smaller portion of a larger FPGA architecture. This region may or may not align with frame boundaries, but the most tested use-case is for partition regions that are one clock region tall.

Overlay Architecture

The overlay architecture is essentially the “inverse” of all the partition regions in a design; it includes everything in the full device that is not in a partition region. Typically this includes chip IOs and the PS region if the chip has one.

Synthetic IO Tiles (Synth IOs)

Synthetic IO tiles are “fake” IOs inserted into the partition region architecture so VPR will route top level IOs to a specific graph node. This method allows partition region architectures to interface with each other and the overlay.

Vivado Node vs Wire

A wire is a small electrically connected part of the FPGA contained within a single tile. A Vivado node is an electrically connected collection of wires that can span multiple tiles.

Flow Overview

A simplified view of the partition region flow is as follows:

	Define each partition region architecture

	Define the overlay architecture based on the partition regions chosen

	Build each architecture separately

	Map a top level verilog file to each architecture

	Generate FASM for each partition region and the overlay

	Concatenate FASM for each architecture together and generate final bitstream

Partition Region Example (switch_processing)

This example contains two partition regions that are each about the size of one clock region.

The goal of this test is to have two partition regions with identical interfaces so switch “data” can be passed through each region before being displayed on LEDs. Each partition region can then have an arbitrary module mapped to it that processes the data in some way before the output. The example modules used currently are an add_1 module, a blink module, and an identity module.

Define the first partition region:

xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr1-roi-virt/design.json [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr1-roi-virt/design.json]

{
 "info":
 {
 "name": "pr1",
 "GRID_X_MAX": 55,
 "GRID_X_MIN": 10,
 "GRID_Y_MAX": 51,
 "GRID_Y_MIN": 0
 },
 "ports": [
 {
 "name": "clk",
 "type": "clk",
 "node": "CLK_HROW_TOP_R_X60Y130/CLK_HROW_CK_BUFHCLK_L0",
 "wire": "HCLK_L_X57Y130/HCLK_CK_BUFHCLK0",
 "pin": "SYN0"
 },
 {
 "name": "in[0]",
 "type": "in",
 "node": "INT_L_X0Y124/EE2BEG0",
 "pin": "SYN1"
 },
 {
 "name": "in[1]",
 "type": "in",
 "node": "INT_L_X0Y125/SE6BEG0",
 "pin": "SYN2"
 },
 {
 "name": "in[2]",
 "type": "in",
 "node": "INT_R_X1Y117/SE2BEG1",
 "pin": "SYN3"
 },
 {
 "name": "in[3]",
 "type": "in",
 "node": "INT_L_X0Y116/EE2BEG0",
 "pin": "SYN4"
 },
 {
 "name": "out[0]",
 "type": "out",
 "node": "INT_L_X2Y103/SE6BEG0",
 "pin": "SYN5"
 },
 {
 "name": "out[1]",
 "type": "out",
 "node": "INT_L_X4Y100/SE6BEG0",
 "pin": "SYN6"
 },
 {
 "name": "out[2]",
 "type": "out",
 "node": "INT_L_X2Y104/SS6BEG2",
 "pin": "SYN7"
 },
 {
 "name": "out[3]",
 "type": "out",
 "node": "INT_L_X2Y104/SS6BEG0",
 "pin": "SYN8"
 },
 {
 "name": "rst",
 "type": "in",
 "node": "INT_R_X21Y119/EE4BEG2",
 "pin": "SYN9"
 }
]
}

Here we see the info section defines the boundaries of the partition region. It is important to use the prjxray grid, not the VPR grid or the Vivado grid, to define these boundaries. The ports section is then used to define the interface pins for the region. A synth IO will be placed to correspond to each of these interface pins. Each pin must contain a name, pin name, type, and node name. The name and pin name must be unique identifiers. The type can be in, out or clk. The node is the vivado node that a synth IO should be connected to.

Optionally, a wire name can be provided to give an exact location for the synth IO. If a wire is not provided it will be inferred as the first wire outside of the partition region on the given node. Providing an explicit wire name is especially important when using nodes that cross all the way through the partition region, such as clock nodes.

Now the CMake files must be defined properly for the first partition region architecture:

xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr1-roi-virt/CMakeLists.txt [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr1-roi-virt/CMakeLists.txt]

add_xc_device_define_type(
 ARCH artix7
 DEVICE xc7a50t-arty-switch-processing-pr1
 ROI_DIR ${symbiflow-arch-defs_SOURCE_DIR}/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr1-roi-virt
 TILE_TYPES
 CLBLL_L
 CLBLL_R
 CLBLM_L
 CLBLM_R
 BRAM_L
 PB_TYPES
 SLICEL
 SLICEM
 BRAM_L
)

The important argument here is ROI_DIR which points to the directory containing the design.json defined earlier.

Next, define the second partition region in a similar way as the first:

xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr2-roi-virt/design.json [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr2-roi-virt/design.json]

{
 "info":
 {
 "name": "pr2",
 "GRID_X_MAX": 57,
 "GRID_X_MIN": 10,
 "GRID_Y_MAX": 156,
 "GRID_Y_MIN": 105
 },
 "ports": [
 {
 "name": "clk",
 "type": "clk",
 "node": "CLK_HROW_BOT_R_X60Y26/CLK_HROW_CK_BUFHCLK_L8",
 "wire": "HCLK_CLB_X56Y26/HCLK_CLB_CK_BUFHCLK8",
 "pin": "SYN0"
 },
 {
 "name": "in[0]",
 "type": "in",
 "node": "INT_L_X20Y51/SS2BEG0",
 "pin": "SYN1"
 },
 {
 "name": "in[1]",
 "type": "in",
 "node": "INT_R_X1Y34/EE4BEG3",
 "pin": "SYN2"
 },
 {
 "name": "in[2]",
 "type": "in",
 "node": "INT_L_X0Y47/EE4BEG3",
 "pin": "SYN3"
 },
 {
 "name": "in[3]",
 "type": "in",
 "node": "INT_L_X0Y39/EE4BEG1",
 "pin": "SYN4"
 },
 {
 "name": "out[0]",
 "type": "out",
 "node": "INT_L_X20Y49/ER1BEG_S0",
 "pin": "SYN5"
 },
 {
 "name": "out[1]",
 "type": "out",
 "node": "INT_R_X3Y34/WW4BEG2",
 "pin": "SYN6"
 },
 {
 "name": "out[2]",
 "type": "out",
 "node": "INT_L_X2Y33/WW2BEG2",
 "pin": "SYN7"
 },
 {
 "name": "out[3]",
 "type": "out",
 "node": "INT_L_X4Y30/WW4BEG2",
 "pin": "SYN8"
 },
 {
 "name": "rst",
 "type": "in",
 "node": "INT_R_X23Y46/WW4BEG3",
 "pin": "SYN9"
 }
]
}

xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr2-roi-virt/CMakeLists.txt [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr2-roi-virt/CMakeLists.txt]

add_xc_device_define_type(
 ARCH artix7
 DEVICE xc7a50t-arty-switch-processing-pr1
 ROI_DIR ${symbiflow-arch-defs_SOURCE_DIR}/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-pr1-roi-virt
 TILE_TYPES
 CLBLL_L
 CLBLL_R
 CLBLM_L
 CLBLM_R
 BRAM_L
 PB_TYPES
 SLICEL
 SLICEM
 BRAM_L
)

The last design.json that must be defined is for the overlay. It is mostly a list of the json for the partition regions contained in the design. One important change is the pin names must still be unique across all ports in the overlay. Any explicit wires must also be changed to be on the other side of the partition region boundary.

xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-overlay-virt/design.json [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-overlay-virt/design.json]

[
 {
 "info":
 {
 "name": "pr1",
 "GRID_X_MAX": 57,
 "GRID_X_MIN": 10,
 "GRID_Y_MAX": 51,
 "GRID_Y_MIN": 0
 },
 "ports": [
 {
 "name": "clk",
 "type": "clk",
 "node": "CLK_HROW_TOP_R_X60Y130/CLK_HROW_CK_BUFHCLK_L0",
 "wire": "HCLK_L_X57Y130/HCLK_CK_BUFHCLK0",
 "pin": "SYN0"
 },
 {
 "name": "in[0]",
 "type": "in",
 "node": "INT_L_X0Y124/EE2BEG0",
 "pin": "SYN1"
 },
 {
 "name": "in[1]",
 "type": "in",
 "node": "INT_L_X0Y125/SE6BEG0",
 "pin": "SYN2"
 },
 {
 "name": "in[2]",
 "type": "in",
 "node": "INT_R_X1Y117/SE2BEG1",
 "pin": "SYN3"
 },
 {
 "name": "in[3]",
 "type": "in",
 "node": "INT_L_X0Y116/EE2BEG0",
 "pin": "SYN4"
 },
 {
 "name": "out[0]",
 "type": "out",
 "node": "INT_L_X2Y103/SE6BEG0",
 "pin": "SYN5"
 },
 {
 "name": "out[1]",
 "type": "out",
 "node": "INT_L_X4Y100/SE6BEG0",
 "pin": "SYN6"
 },
 {
 "name": "out[2]",
 "type": "out",
 "node": "INT_L_X2Y104/SS6BEG2",
 "pin": "SYN7"
 },
 {
 "name": "out[3]",
 "type": "out",
 "node": "INT_L_X2Y104/SS6BEG0",
 "pin": "SYN8"
 },
 {
 "name": "rst",
 "type": "in",
 "node": "INT_L_X0Y119/EE4BEG1",
 "pin": "SYN9"
 }
]
 },
 {
 "info":
 {
 "name": "pr2",
 "GRID_X_MAX": 57,
 "GRID_X_MIN": 10,
 "GRID_Y_MAX": 156,
 "GRID_Y_MIN": 105
 },
 "ports": [
 {
 "name": "clk",
 "type": "clk",
 "node": "CLK_HROW_BOT_R_X60Y26/CLK_HROW_CK_BUFHCLK_L8",
 "wire": "HCLK_CLB_X56Y26/HCLK_CLB_CK_BUFHCLK8",
 "pin": "SYN10"
 },
 {
 "name": "in[0]",
 "type": "in",
 "node": "INT_L_X20Y51/SS2BEG0",
 "pin": "SYN11"
 },
 {
 "name": "in[1]",
 "type": "in",
 "node": "INT_R_X1Y34/EE4BEG3",
 "pin": "SYN12"
 },
 {
 "name": "in[2]",
 "type": "in",
 "node": "INT_L_X0Y47/EE4BEG3",
 "pin": "SYN13"
 },
 {
 "name": "in[3]",
 "type": "in",
 "node": "INT_L_X0Y39/EE4BEG1",
 "pin": "SYN14"
 },
 {
 "name": "out[0]",
 "type": "out",
 "node": "INT_L_X20Y49/ER1BEG_S0",
 "pin": "SYN15"
 },
 {
 "name": "out[1]",
 "type": "out",
 "node": "INT_R_X3Y34/WW4BEG2",
 "pin": "SYN16"
 },
 {
 "name": "out[2]",
 "type": "out",
 "node": "INT_L_X2Y33/WW2BEG2",
 "pin": "SYN17"
 },
 {
 "name": "out[3]",
 "type": "out",
 "node": "INT_L_X4Y30/WW4BEG2",
 "pin": "SYN18"
 },
 {
 "name": "rst",
 "type": "in",
 "node": "INT_R_X23Y46/WW4BEG3",
 "pin": "SYN19"
 }
]
 }
]

xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-overlay-virt/CMakeLists.txt [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-overlay-virt/CMakeLists.txt]

add_xc_device_define_type(
 ARCH artix7
 DEVICE xc7a50t-arty-switch-processing-overlay
 OVERLAY_DIR ${symbiflow-arch-defs_SOURCE_DIR}/xc/xc7/archs/artix7/devices/xc7a50t-arty-switch-processing-overlay-virt
 TILE_TYPES
 CLBLL_L
 CLBLL_R
 CLBLM_L
 CLBLM_R
 BRAM_L
 LIOPAD_M
 LIOPAD_S
 LIOPAD_SING
 RIOPAD_M
 RIOPAD_S
 RIOPAD_SING
 CLK_BUFG_BOT_R
 CLK_BUFG_TOP_R
 CMT_TOP_L_UPPER_T
 CMT_TOP_R_UPPER_T
 HCLK_IOI3
 PB_TYPES
 SLICEL
 SLICEM
 BRAM_L
 IOPAD
 IOPAD_M
 IOPAD_S
 BUFGCTRL
 PLLE2_ADV
 HCLK_IOI3
)

The important argument here is OVERLAY_DIR which points to the directory containing the design.json for this overlay. Notice this CMakeLists.txt also contains more tile/pb types because it contains the real IOs.

Continuing on past design.json definitions, CMake needs to be informed these new architectures should be built. This is done in another CMakeLists.txt by adding the following:

xc/xc7/archs/artix7/devices/CMakeLists.txt [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/archs/artix7/devices/CMakeLists.txt]

add_xc_device_define(
 ARCH artix7
 PART xc7a50tfgg484-1
 USE_ROI
 DEVICES xc7a50t-arty-switch-processing-pr1 xc7a50t-arty-switch-processing-pr2
)
add_xc_device_define(
 ARCH artix7
 PART xc7a50tfgg484-1
 USE_OVERLAY
 DEVICES xc7a50t-arty-switch-processing-overlay
)

The last step before switching over to adding a test is adding to boards.cmake:

xc/xc7/boards.cmake [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/boards.cmake]

add_xc_board(
 BOARD arty-switch-processing-pr1
 DEVICE xc7a50t-arty-switch-processing-pr1
 PACKAGE test
 PROG_CMD "${OPENOCD} -f ${PRJXRAY_DIR}/utils/openocd/board-digilent-basys3.cfg -c \\\"init $<SEMICOLON> pld load 0 \${OUT_BIN} $<SEMICOLON> exit\\\""
 PART xc7a35tcsg324-1
)

add_xc_board(
 BOARD arty-switch-processing-pr2
 DEVICE xc7a50t-arty-switch-processing-pr2
 PACKAGE test
 PROG_CMD "${OPENOCD} -f ${PRJXRAY_DIR}/utils/openocd/board-digilent-basys3.cfg -c \\\"init $<SEMICOLON> pld load 0 \${OUT_BIN} $<SEMICOLON> exit\\\""
 PART xc7a35tcsg324-1
)

add_xc_board(
 BOARD arty-switch-processing-overlay
 DEVICE xc7a50t-arty-switch-processing-overlay
 PACKAGE test
 PROG_CMD "${OPENOCD} -f ${PRJXRAY_DIR}/utils/openocd/board-digilent-basys3.cfg -c \\\"init $<SEMICOLON> pld load 0 \${OUT_BIN} $<SEMICOLON> exit\\\""
 PART xc7a35tcsg324-1
)

This defines a separate board for each of the partition regions and overlay so they can be mapped to separately.

Now to define a test. This part of the documentation will not go in detail on how to define a new test case in symbiflow-arch-defs, but will point out items of importance for using the partial reconfiguration flow.

All of the following snippets are from xc/xc7/tests/switch_processing/CMakeLists.txt [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/tests/switch_processing/CMakeLists.txt]

Here the add_1 and blink modules are mapped to pr1 and pr2 respectively. The identity function is then also mapped to each partition region.

Here the overlay verilog is mapped to the overlay architecture. This overlay verilog connects switches to the input of the first partition region, connects the output of the first partition region to the input of the second partition region, and then connects the output of the second partition region to LEDs.

Lastly, multiple merged bitstream targets are defined. These targets will concatenate the FASM generated by each included target and produce the final bitstream. By varying which targets are included different functionality is created without having to remap any new regions after it has been done once. Just concatenate the resulting FASM and get different functionality.

The last thing to cover related to the SymbiFlow partial reconfiguration flow is synthetic ibufs and obufs required in the overlay verilog:

switch_processing_arty_overlay.v [https://github.com/SymbiFlow/symbiflow-arch-defs/blob/master/xc/xc7/tests/switch_processing/switch_processing_arty_overlay.v]

Currently the SYN_IBUF and SYN_OBUF must be explicitly defined for each top level IO that will be constrained to a synth IO. In the future this should be able to be resolved using a yosys io map pass, but currently if explicit synthetic buffers are not defined the top level IOs will be packed into a real IO. This will prevent constraining the top level IOs to the intended synthetic IO location.

The overlay pcf file can then be written to constrain real IOs to chip IOs and synthetic IOs to synthetic IOs.

Frequently Encountered Errors

	Error

	Solution

	SYN-IOPAD unroutable

	Make sure the chosen node is driven in the correct direction for the I/O type it is being used as.
Inputs to a partition region must be driven from outside the partition region and outputs must be driven from inside the partition region.

Development Practices

These documents outline the development practices for the project.

	Structure
	Directories

	Files

	Names

	Notes

	Verilog To Routing Notes

Structure

Directories

	XXX/device/ - Full architecture definitions of a given device for
[Verilog To Routing](https://verilogtorouting.org/)

	XXX/device/YYYY-virt - Verilog to Routing architecture definitions
generally are not able to able to generate the exact model of many
FPGA routing interconnects, but this is a pretty close.

	XXX/primitives/ - The primitives that make up the architecture. These
are generally used inside the tiles.

	XXX/tiles/ - The tiles found in the architecture.

	XXX/tests/ - Tests for making sure the architecture specific features
works with VPR.

	vpr - Common defines used by multiple architectures.

Files

	pb_type.xml - The Verilog to Routing
[Complex Block](https://docs.verilogtorouting.org/en/latest/arch/reference/#complex-blocks)
defintinition.

	Inside primitives directory they should be intermediate or primitive
<pb_type> and thus allow setting the num_pb attribute.

	Inside tiles directory they should be top level <pb_type> and thus have,

	capacity (if a pin type),

	width & height (and maybe area)

	model.xml - The Verilog to Routing
[Recognized BLIF Models](https://docs.verilogtorouting.org/en/latest/arch/reference/#recognized-blif-models-models)
defintinition.

	sim.v - A Verilog definition of the object. It should;

	[] Match the definition in model.xml (should be one module in
sim.v for every model in model.xml)

	[] Include a ifndef BLACKBOX section which actually defines how the
Verilog works.

	macro.v - A Verilog definition of the object which a user might
instantiate in their own code when specifying a primitive. This should match
the definition provided by a manufacturer. Examples would be the definitions
in;

	[Lattice iCE Technology Library](http://www.latticesemi.com/~/media/LatticeSemi/Documents/TechnicalBriefs/SBTICETechnologyLibrary201504.pdf)

	[UG953: Vivado Design Suite 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries Guide](https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug953-vivado-7series-libraries.pdf)

Names

	BLK_MB-block_1_name-block_2_name - BLOCK which is a “mega block”. A “mega block” is a top level block which is made up of other blocks.

	BLK_XX-name - BLOCK which is the hierarchy. Maps to BLK_SI -> SITE and BLK_TI -> TILE in Xilinx terminology.

	BLK_IG-name - BLOCK which is ignored. They don’t appear in the output hierarchy and are normally used when something is needed in the description which doesn’t match actual architecture.

	BEL_RX-mux_name - BEL which is a routing mux. Routing muxes are statically configured at PnR time.

	BEL_MX-mux_name - BEL which is a mux .

	BEL_LT-lut_name - BEL which is a look up table.

	BEL_MM-mem_name - BEL which is a me**m**ory.

	BEL_FF-ff_name - BEL which is a flip flop (FF).

	BEL_LL-latch_name - BEL which is a latch (LL).

	BEL_BB-name - BEL which is a black box (BB).

	PAD_IN-name - A signal input location.

	PAD_OT-name - A signal output location.

Notes

	Unless there is a good reason otherwise, all muxes should be generated via
[mux_gen.py](utils/mux_gen.py)

	DRY (Don’t repeat yourself) - Uses
[XML XIncludes](https://en.wikipedia.org/wiki/XInclude) to reuse stuff!

Verilog To Routing Notes

We have to do some kind of weird things to make VPR work for real
architectures, here are some tips;

	VPR doesn’t have channels right or above tiles on the right most / left most
edge. To get these channels, pad the left most / right most edges with EMPTY
tiles.

	Generally we use the vpr/pad object for the actual .input
and .output BLIF definitions. These are then connected to the tile which
has internal IO logic.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/vtr-rrgraph.png
Straight Wire Straight Wire Curved Wire Global Wire Curve with Stub Cross
L L L L L L L
L L L L L
L L L L L
L L L L L L L
! ! ! ! ! !
Straight Wire Straight Wire Curved Wire Curved Wire Curve with Stub Cross
L] L] L] L] L] L] L]
L] L[] L[] L[] o
L] L4 A4 A4 L
L L d L] L] L] O d

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 SymbiFlow Architecture Definitions

 		
 Getting Started with SymbiFlow Toolchain development

 		
 Clone repository

 		
 Prepare environment

 		
 Build example

 		
 Load bitstream

 		
 OpenFPGALoader

 		
 Project X-Ray

 		
 Flow Diagram

 		
 VPR routing graph

 		
 Database Contents

 		
 VPR routing description

 		
 Creating a 7-series routing graph for VPR

 		
 Xilinx 7 Series SymbiFlow Partial Reconfiguration Flow

 		
 Background

 		
 Flow Overview

 		
 Partition Region Example (switch_processing)

 		
 Frequently Encountered Errors

 		
 Development Practices

 		
 Structure

 		
 Directories

 		
 Files

 		
 Names

 		
 Notes

 		
 Verilog To Routing Notes

_images/arch-defs-flow1.png
File ‘

Project X-Ray
File

Verilog to Routing
File

SynbiFlow Arch
Defs File

C=C

Program

Project X-Ray)

fuzzers/074-dumpall
: Check this

X0 sim.y

~

Project X-Ray

pin_assignment.json

SymbiFlow Arch
Def Program

Always
Generated File

Sometime
Generated File

A ————— &

Aincludes B

e ew o

A generated from B using c.py

Yosys Verilator / iVerilog
Formal Verification Simulation

top.v.
User Verilog

Post PnR Sim

xxx.bit

fasm2frames.py

I icestorn o :
\ lceStorm Database fasmasc = xxx.ase

xxx.bin :

L S

_images/import-flow1.png
harness
(design.json)

Project X-Ray database to VPR import flow

VPR

(run for a dummy design ‘wire.eblif)

\
rr_graph.virt.xml

v

prixray_routing_import.py

— rr_graph.real.xml

6 8
prjxray_tile_import py
(invoked for each primitive) g == > arch.merged.xml
7 9 l 10
prixray_arch_import.py —t—» arch.xml specialize_carrychains.py — arch.unique_pack.xml ——
1 2
prixray_create_synth_tiles.py —1 synth_tiles.json —| prixray_synth_tiles_to_pinmap_csvpy — synth_tiles_pinmap.csv
3
prjxray_form_channels.py 1
>
channy

prixray_assign_tile_pin_direction.py (% pin_assignments.json —|

prixray_create_edges.py

channels.db

Numbers above blocks indicate their execution order

[Y

_static/sphinxcontrib-images/LightBox2/lightbox2/dist/images/close.png

_static/up-pressed.png

_static/up.png

_static/sphinxcontrib-images/LightBox2/lightbox2/dist/images/prev.png

_static/sphinxcontrib-images/LightBox2/lightbox2/dist/images/loading.gif

_static/sphinxcontrib-images/LightBox2/lightbox2/dist/images/next.png

